Weighted Approximate Fekete Points: Sampling for Least-Squares Polynomial Approximation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Fekete Points for Weighted Polynomial Interpolation

We compute approximate Fekete points for weighted polynomial interpolation by a recent algorithm based on QR factorizations of Vandermonde matrices. We consider in particular the case of univariate and bivariate functions with prescribed poles or other singularities, which are absorbed in the basis by a weight function. Moreover, we apply the method to the construction of real and complex weigh...

متن کامل

Least-squares polynomial approximation

We construct symmetric polar WAMs (Weakly Admissible Meshes) with low cardinality for least-squares polynomial approximation on the disk. These are then mapped to an arbitrary triangle. Numerical tests show that the growth of the least-squares projection uniform norm is much slower than the theoretical bound, and even slower than that of the Lebesgue constant of the best known interpolation poi...

متن کامل

Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points

Using the concept of Geometric Weakly Admissible Meshes (see §2 below) together with an algorithm based on the classical QR factorization of matrices, we compute efficient points for discrete multivariate least squares approximation and Lagrange interpolation.

متن کامل

Polynomial approximation and cubature at approximate Fekete and Leja points of the cylinder

The paper deals with polynomial interpolation, least-square approximation and cubature of functions defined on the rectangular cylinder, K = D × [−1, 1], with D the unit disk. The nodes used for these processes are the Approximate Fekete Points (AFP) and the Discrete Leja Points (DLP) extracted from suitable Weakly Admissible Meshes (WAMs) of the cylinder. ¿From the analysis of the growth of th...

متن کامل

Iterated Approximate Moving Least Squares Approximation

The radial basis function interpolant is known to be the best approximation to a set of scattered data when the error is measured in the native space norm. The approximate moving least squares method, on the other hand, was recently proposed as an efficient approximation method that avoids the solution of the system of linear equations associated with the radial basis function interpolant. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2018

ISSN: 1064-8275,1095-7197

DOI: 10.1137/17m1140960